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Figure 1: (a) An ordinary photo is scanned in. (b) Shape-from-shading applied to an object in the image to estimate its normals. (c) Pixel
patches formed by clustering normals. (d) Texture synthesized on these patches and aligned with neighboring patches. (e) Final result with
texture orientation distortion, displacement mapping and environment mapping.

Abstract

We combine existing techniques for shape-from-shading and tex-
ture synthesis to create a new tool for texturing objects in pho-
tographs. Our approach clusters pixels with similar recovered nor-
mals into patches on which texture is synthesized. Distorting the
texture based on the recovered normals creates the illusion that the
texture adheres to the undulations of the photographed surface. In-
consistencies in the recovered surface are disguised by the graph-
cut blending of the individually textured patches. Further appli-
cations include the generation of detail on manually-shaded paint-
ing, extracting and synthesizing a displacement map from a texture
swatch, and the embossed transfer of normals from one image to
another, which would be difficult to create with current image pro-
cessing packages.

1 Introduction

Texture synthesis has revolutionized the construction of texture
maps and the application of texture to surfaces. Given a texture
swatch, it uses a machine learning process to plausibly extrapolate
its pattern, extending the texture features across an image plane or
the surface of a geometric model [Turk 2001; Wei and Levoy 2001].

This paper suggests a novel application of texture synthesis in
photograph editing. Various commercial software packages for
photograph editing exist, but they work in the image space and do

not offer a direct method to apply texture to the surface of a pho-
tographed object, and using these tools for the convincing texturing
of an undulating surface requires both time and skill.

Shape-from-shading techniques can recover a height field from
the image of a shaded surface, and existing texture synthesis tech-
niques could be applied to a recovered mesh. However, such recon-
struction is complex, expensive and inaccurate, particularly in the
presence of noise or an unknown reflectance map.

We overcome these limitations by creating small pixel patches,
clustered by similar recovered normals. We perform texture synthe-
sis on these patches, distorting pixel positions into a local parame-
terization to account for patch orientation and displacement. These
patches are further distorted to match the features of neighboring
patches. This patchwork of feature-aligned foreshortened textured
pixel clusters gives the illusion that the texture is applied to the pho-
tographed surface. We also apply shape-from-shading to the texture
to support displacement mapping and normal transfer (embossing).

2 Previous Work

Of the large body of recent papers on texture synthesis, those most
germane to our application focus on finding seams in a texture
swatch that allow low-frequency features to be plausibly repro-
duced, such as image quilting [Efros and Freeman 2001] and graph-
cut textures [Kwatra et al. 2003]. Our approach segments the image
of an object into patches of similarly oriented pixels, and performs
a similar seam determination on these patches.

Any of the existing methods for reconstructing a full 3-D meshed
model, usually from a series of images from different viewpoints,
would support existing surface texture synthesis methods [Wei and
Levoy 2001; Turk 2001]. Our application of graphcut textures
avoids the need for reconstructing global 3-D mesh, and synthe-
size the texture instead on a network of individually parameterized
surface patches.



Our method is designed to operate on a single image. Inpainting
is a technique for extending an image across the pixel regions left
blank from removing unwanted objects from the picture [Bertalmio
et al. 2000]. Image inpainting performs texture synthesis on an im-
age, but draws its texture samples from the original image instead
of a separate texture swatch. Poisson image editing performs in-
painting with a texture synthesized from a separate source, but this
source is a second image instead of a texture swatch [Perez et al.
2003]. Furthermore, neither method was designed to utilize the 3-D
shading cues of the removed object. Our normal transfer applica-
tion instead applies Poisson image editing to blend surface normals
recovered from one image onto another.

Oh et al. [2001] describe a user-assisted system for construct-
ing an image-based model from a single photograph. Like our
method, they too segment an image, though into a layered depth
image [Shade et al. 1998]. They depend on a computer-assisted
user to infer depth from parallel and orthogonal configurations in
the scene and to paint the portions of the scene occluded in the
original image. Texture synthesis could be implemented on the re-
sulting layered depth image, but coding such a complex system to
achieve just texture synthesis is an overkill, and we describe a much
simpler method that adequately extracts the normals of an object in
a photograph.

Ismert et al. [2003] work on the related problem of image-based
texturing, where a texture is extracted from input images used for
image-based modeling, and texture synthesis is used to recover the
high-frequency detail lost in the resampling process of the image-
based rendering system.

Graphcut textures segment an image into overlapping patches
and a max-flow algorithm is used to find a portion of a source image
to lay down in the current patch position, blending features through
overlapping patch boundaries [Kwatra et al. 2003]. Our applica-
tion augments graphcut textures with deformations that create the
illusion that the textured patches lie on the photographed surface.

3 Shape from Shading

A wide variety of sophisticated shape-from-shading and photocli-
nometric algorithms exist for reconstructing a surface from an im-
age [Horn 1990]. These methods pose shape-from-shading as an
optimization problem and employ iterative methods to solve the re-
sulting partial differential equations. The results are gradient and
height fields consistent with the surface portrayed in the image.

For visually plausible texture synthesis, we need not find a
strictly consistent height field nor construct a full surface represen-
tation. We will instead segment the surface into oriented patches,
and perform texture synthesis independently on these patches.

3.1 Normal Recovery

Horn [1990] gives the formulae for recovering the surface normals
from an image for a wide variety of reflectance functions, but we
find the following simple Lambertian reflectance model works well
for our purposes. Let S be the unit vector from the center of the
object toward a sufficiently distant point light source. We further
assume the point on the surface with largest intensity Imax faces
the light source. The darkest point is shadowed and its intensity
Imin indicates the ambient light in the scene. The function c(x,y) =
(I(x,y)− Imin)/(Imax − Imin) estimates the cosine of the angle of
incidence, and s(x,y) =

√
1− c(x,y)2 its sine, which leads to the

recovered normal N(x,y) as

G(x,y) = ∇I(x,y)− (∇I(x,y) ·S)S, (1)
N(x,y) = c(x,y) S + s(x,y) G(x,y)/||G(x,y)|| (2)

where ∇I(x,y) = (∂ I/∂x,∂ I/∂y,0) is the image gradient.

We estimate the vector to the light S from the intensity of pixels
(xi,yi) on the boundary of the object’s projection. For such pixels
the normal N(xi,yi) is in the direction of the strong edge gradient.
The source vector S is then the least-squares solution to the over-
constrained linear system

N(xi,yi) ·S =
I(xi,yi)− Imin

Imax − Imin
. (3)

The user can adjust the light source direction manually if the in-
ferred result is incorrect.

Such an estimated normal field is generally inaccurate, but it cap-
tures the undulations of a surface well enough to support texture
synthesis. It is also very fast, thus suitable for an interactive photo-
graph editing tool.

3.2 Interactive Normal Editing

The normal field recovered from the brightness of an image can be
unsatisfying due to various reasons: multiple light sources, non-
Lambertian materials and textured materials. Moreover, shading
information is lost in shadowed areas. Rather than attempting to
handle these complications automatically, we instead implemented
several intuitive methods for tuning the result interactively.

We display the normal field as an RGB-coded normal image, a
vector field, or with a quickly synthesized texture. The user can
manipulate the reflectance model of the surface with a spline curve
initialized to the Lambertian reflection model. The influence of sur-
face texture and noise can be reduced by smoothing the image in-
tensity and/or the recovered normal field. The user can also ro-
tate selected normals to compensate for the effect of a second light
source. Finally, the variation of normals over a region can be ma-
nipulated, as demonstrated in Fig. 2.
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Figure 2: Variation of the normal field (a) is enhanced (b), reduced
(c) and reversed (d).

3.3 Surface segmentation

The surface pixels are grouped into patches with similar normal
directions using a bottom-up scheme. The segmentation process is
initialized by assigning each pixel to its own patch. For each patch
Pi, let Ni,Ci and |Pi| denote the patch’s mean normal, centroid pixel
and number of pixels, respectively. Then two neighboring patches
P1,P2 are merged if the error metric

E(P1,P2) = k1
√

1−N1·N2 + k2||C1−C2||+ k3(|P1|+|P2|) (4)

falls below a given threshold. Appropriate settings for the constants
k1,2,3 will yield moderate-sized round patches of similarly oriented
pixels. In most cases we used k1 = 187, k2 = 20, k3 = 1 except
for Fig. 1(c) which used a larger k1 to further emphasize orienta-
tion clustering. The patches are then expanded by a fixed-width
boundary (16 pixels in our examples) so they overlap each other.

4 Patch Distortion

Though the patches have been formed, simply applying the graph-
cut texturing algorithm [Kwatra et al. 2003] on them will yield a flat



texture. We describe several patch distortions that result in a more
realistic surface texturing appearance.

4.1 Patch Orientation

To achieve the illusion that the texture follows the underlying sur-
face, a patch orientation distortion algorithm will assign each pixel
P(x,y) a new position in its texture coordinates U(x,y) = (u,v) to
capture the foreshortening distortion due to its recovered normal.

The algorithm starts at the center pixel P(0,0) of the patch, set-
ting its texture coordinates U(0,0) = (0,0), and propagates the dis-
tortion to the rest of the patch in a width-first floodfill order.

Let P(x,y) indicate the pixel at (x,y) with distorted position
U(x,y) and recovered (unitized) normal N(x,y) = (Nx,Ny,Nz).
Given P(x,y) we compute the foreshortening distortion of the next
pixel to its right P(x + 1,y) by projecting this pixel’s position
(x + 1,y,0) onto the recovered tangent plane of pixel P(x,y) and
then rotating this projection back into the image plane, as illustrated
in Fig. 3. The distortion is cumulative and propagates by adding the
resulting offset to the current distortion U(x,y) and storing the re-
sult in U(x+1,y).
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Figure 3: Texture distortion according to recovered patch orienta-
tion.

The projection of the point (x+1,y,0) onto the plane with nor-
mal N(x,y) passing through (x,y,0) is (x+1,y,−Nx/Nz). Let θ be
the angle between N and Z = (0,0,1) and abbreviate c = cosθ =

Nz and s = sinθ =
√

N2
x +N2

y . The unitized axis of rotation is

(N×Z)/||N×Z|| = (Ny/s,−Nx/s,0) which leads to the rotation
matrix

R =

 c+(1−c)N2
y /s2 −(1−c)NxNy/s2 −Nx

−(1−c)NxNy/s2 c+(1−c)N2
x /s2 −Ny

Nx Ny Nz

 . (5)

The product R(1,0,−Nx/Nz) yields the new position of pixel P(x+
1,y), leading to the propagation rules

U(x±1,y) = U(x,y)±
(1+Nz −N2

y ,NxNy)
(1+Nz)Nz

, (6)

U(x,y±1) = U(x,y)±
(NxNy,1+Nz −N2

x )
(1+Nz)Nz

. (7)

We clamp Nz to a minimum of 0.1 and renormalize Nx,Ny to avoid
outrageous distortions. If the distortions of more than one neigh-
boring pixel are available for propagation, then the final orienta-
tion distortion is the mean of the distortions computed from each

of these neighbors. This averaging reveals that this scheme gen-
erates an inconsistent parameterization, and these inconsistencies
increase in severity with distance from the centroid, but our seg-
mentation heuristic is designed to produce small round patches that
reduce the variance of their normals to keep these internal incon-
sistencies small, and the inconsistencies between patches are later
camouflaged by the feature-sensitive seams cut through overlapping
areas by the graphcut algorithm.

4.2 Texture Orientation

Texture orientation can also be defined over the image, to more con-
sistently align anisotropic features of the synthesized texture. Vec-
tor field orientation can be modified by dragging the mouse over
the photo. The patch parameterization is then rotated about its cen-
troid (conveniently the origin of the parameterization) to align the
preferred texture direction vector with the appropriate axis of the
texture swatch. The rotation of the parameterization effectively ro-
tates the patch about its average normal.

4.3 Displacement Mapping

We have thus far applied shape-from-shading techniques to the pho-
tograph to recover a local surface on which to synthesize a texture.
We can also apply shape-from-shading to the texture swatch used as
a source for texture synthesis. This will allow us to do displacement
mapping on surface.

We predict the normals N̂(x,y) of the texture swatch using the
same method from the previous section. But whereas the pho-
tographed object surface was reconstructed locally, the texture
swatch will require a global surface reconstruction. Assuming the
input texture color variation is caused only by local normal changes,
the height field of the texture swatch h(x,y) is determined by the
Poisson equation

∇
2h(x,y) = ∇ · N̂(x,y) (8)

and solved by conjugate gradients. The user-specified height of
a portion of the texture serves as a boundary condition (e.g. the
shadowed area of Fig. 4(b) was assigned a height of zero).

Often features reconstructed by (8) will shrink or grow when
compared to the original. In Fig. 4(c), the reconstructed wicker is
too narrow, but can be interactively corrected by a user-specified
nonlinear scale of the height field, yielding Fig. 4(d).
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Figure 4: Basket texture original (a). Height of shadowed area is
set to zero (b). Wicker of the basket is narrow in recovered result
(c). Wicker become wider after a non-linear scaling on the height
field (d).

During displacement-map texture synthesis, each texture sample
is translated in the direction of the photograph’s image-projected
recovered normal (Nx,Ny,0) by the recovered texture height h(x,y)

foreshortened by the recovered texture normal
√

1− N̂2
z . We up-

sample both the surface normal and texture height to avoid holes.
An example is shown in Fig. 5 (b).

These displacements are significant enough to cause aliases
when a texture, such as wicker, contains sharp edges. These arti-
facts can be sufficiently reduced by blending the edge samples with
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Figure 5: Texture synthesis from a source image texture without
displacement mapping is betrayed by its smooth silhouette (a). Ap-
plying shape-from-shading to the source texture produces a noisy
displacement mapping (b) that is fixed by upsampling and filtering
(c).

Painter’s algorithm according to the percentage of the pixel they
cover, as shown in Fig. 5(c).

4.4 Feature Matching

Once the distortions and displacements have been computed, tex-
ture synthesis occurs on the deformed patches with samples from
the displaced texture swatches. At this point the graphcut algorithm
[Kwatra et al. 2003] could cut a seam through the overlapping tex-
tured patches, but graphcut may not align all of the features in the
synthesized textures.

We align these features with a deformation algorithm that resem-
bles methods used in smoke animation [McNamara et al. 2003].
First we blur the synthesized texture in the overlapping portions of
both patches P1(x,y) and P2(x,y). For each pixel position x = (x,y)
in the overlapping boundaries of the patches, we define a 2-D defor-
mation vector U(x), initialized to (0,0). We then define an objective
function

ϕ = k1 ∑ ||P1(x)−P2(x+U(x))||+ k2 ∑ |∇ ·U(x)| (9)

to maximize the color match while minimizing the amount of de-
formation over the patch overlap area. We set k1 = 1,k2 = 9 and our
RGB channels ranged from 0 . . .255. Our feature mapping imple-
mentation computed ∂ϕ/∂U(x) and minimized ϕ using conjugate
gradients. We found the deformation vector can be solved on a
subset of the overlapping pixels and interpolated on the rest to ac-
celerate convergence and further smooth the deformation, though at
the risk of overlooking the matching of smaller features.

Once the deformation vectors have been constructed on the over-
lapping boundaries, they are blended into to the new patch’s inte-
rior via Poisson image editing [Perez et al. 2003], and the graph-
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Figure 6: Brick texture without (a) and with (b) morphing.

Figure 7: Brick texture follows the surface in the original photo
(inset).

cut algorithm is finally applied to find the optimal seam through
the overlapping area. Our cost function for cutting a seam through
overlapping areas is a weighted combination of pixel color and re-
covered surface normal, though color alone suffices in most cases.
Our overlapping area is 16 pixels wide. Fig. 6 demonstrates the
result.

5 Results

We demostrate several applications of our algorithm in photograph
editing that would be difficult or at least cumbersome to achieve
with current software.

Surface Replacement. These techniques were designed for the
application of replacing the appearance of a photographed surface
with that of a synthesized texture. This works best when the pho-
tographed surface is untextured and nearly Lambertian (e.g. skin,
clothes, sculptures), illuminated by a single directional source. Er-
rors in the recovered normal field can be rectified by additional user
manipulation. Figs. 7, 10 and 11 give three examples of texturing
different real world surfaces. Fig. 10 (f) pushed our method to its
perceptual limits. The constant size and well-known shape of text
characters, more so than the other textures, accentuate the inaccu-
racy of estimated normal field.

Detail Generation. Hand painting objects into a photo with
plausible shading is not difficult, but painting detail into such ar-
tificial objects can be time consuming. In Fig. 8, several vases are



Figure 8: Texture synthesis (below) yields detail that follows the
surface implied by the hand painted shading (above).

painted into a scene with a plausible approximation of shading, then
different textures are applied to create intricate details that follow
the surface implied by the painted shading.

Normal Transfer (Embossing). In Fig. 9, the recovered surface
normals from one image is applied to another, yielding an embossed
result. Poisson image editing is used to seamlessly merge transfered
normal and brightness into the target image’s normal and brightness
respectively. Texture on the original surface in target image is ex-
tracted as texture swatch. If available texture is not large enough,
a 2D texture synthesis may be applied to generate a larger one. A
256×256 pixel texture is enough for generating all results for this
paper.

Lighting. Though the original photographed surface brightness
can be used to shade the result, the synthesized texture with the re-
covered surface normals can be rendered under any desired lighting
configuration. The synthesized texture can even be environment
mapped to appear more naturally embedded in the scene as demon-
strated in Fig. 8. An environment map can be synthesized from the
background of the photograph through inpainting and extrapolation
[Drori et al. 2003].

Performance. The synthesis speed highly depends on searching
effort, patch size and whether displacement mapping and feature
matching are enabled. When the texture has a large regular pattern
like brick, searching a larger area is required to find a match. Some
typical speed on a 1.2GHz Athlon is shown in Table 1.

Displacement Feature
Image Mapping Matching Time
Fig. 10(d) Yes No 55s
(Fig. 10(d)) No No 24s
(Fig. 10(d)) Yes Yes 140s
Fig. 7 No Yes 90s
Fig. 11(c) No No 12s
Fig. 8 (all vases) No Yes 63s
Fig. 9(b) No No 18s

Table 1: Features and running times of figures in this paper.

6 Conclusion

The sophisticated tools of shape from shading and distorted graph-
cut textures combine to form a new tool that conveniently and ro-
bustly allows a user to texture an object in a photograph. The
objects are limited to smooth diffuse surfaces illuminated by sim-
ple lighting conditions, but the method has worked well for us on
faces and t-shirts, as well as sculptures and architectural embelish-
ments. Implementation of more sophisticated shape from shading
could extend these technqiues to a wider variety of surface types, re-
flectances and lighting conditions. In its present form, Textureshop
works well enough to serve as a tool for concept visualization in
architecture, art, fashion, design, visual effects and, in general, per-
sonal digital content creation.
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Figure 9: The normal field recovered from one image is transferred onto another.
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Figure 10: Makeup.
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Figure 11: Fashion.


